LQ search in eejj channel

Simona Rolli (Tufts) blessing

Introduction

- This analysis is an update of the result produced in March 2003
- REMAKE data 4.11.1 up to Summer shutdown used - 203 pb⁻¹
- New categories added
 - use now CC and CP electrons;
- New good run list
- New evaluation of efficiencies and background
 - fakes

LQ production at the TeVatron

Production

- qg ☐ LQ + LQbar
- gg ☐ LQ + LQbar
- qqbar [] LQ + LQbar
- Decay
 - LQLQ ☐ I+I-qq, I±☐qq, ☐☐qq

$$\square = Br(LQ->eq)$$

- Experimental signature:
 - High pt isolated leptons (and/or MET) + jets

LQ production at TeVatron

Code from Michael Kraemer (Phys.Rev.Lett 79,1997)

s = 1960 GeV $Q^2 = M_{LQ}^2$ CTEQ4M pdf

M_{LQ} (GeV/c^2)	\square (NLO) [pb]
GeV/c^2)	
200	0.265E+00
220	0.139E+00
240	0.749E-01
260	0.412E-01
280	0.229E-01
300	0.129E-01
320	0.727E-02

LQ search in eejj

- \$ 2 ele with $E_T > 25 \text{ GeV}$
- § 2 jets with $E_{T}(j1) > 30$ and $E_{T}(j1) > 15$ GeV
- \S removal of events with 76 < M_{ee} < 110 GeV and M_{ee} > 15 GeV
- $E_T(j1) + E_T(j2) > 85 \text{ GeV } \&\& E_T(e1) + E_T(e2) > 85 \text{ GeV}$
- $((E_T(j1) + E_T(j2))^2 + (E_T(e1) + E_T(e2))^2) > 200 \text{ GeV}$

High P_T electron triggers (ele_18 and Ele_70) One tight electron and one loose or plug

Tools

- Signal generated and reprocessed with 4.9.1
 - 5000 events at masses from 200 to 320
 - run number 151435
 - full beam position
 - talk GenPrimVert
 - BeamlineFromDB set false
 - sigma_x set 0.0025
 - sigma_y set 0.0025
 - sigma_z set 28.0
 - pv central x set -0.064
 - pv_central_y set 0.310
 - pv_central_z set 2.5
 - pv_slope_dxdz set -0.00021
 - pv_slope_dydz set 0.00031
 - exit
- eN (4.9.1 + patches) used for ntuple analysis
 - http://ncdf70.fnal.gov:8001/talks/eN/eN.html

Tools (cont'd)

- Background MC 4.9.1
 - -DY + 2 jets
 - generated with alpgen + HERWIG
 - For cross section we used mcfm NLO
 - 50K events for 15 < m_{ee} < 75
 - 27.5K events for $75 < m_{ee} < 105$
 - 50K events for 105 < m_{ee} < 800
 - Top
 - Pythia 5K events tt into dileptons
- Fakes from data, with isolation method and same-sign method as cross check;

Efficiencies & acceptance

$$\square_{\text{ot}} = \square_{\text{Acc}}(M)x \square_{D}x \square_{z_0}x \square_{\text{rig}}$$

- Trigger
 - Top/EW same as in Z` analysis
 - 99.9 CC
 - 96.8 CP
- Efficiencies for electron selection cuts
 - From Z' analysis
 - $\Box_{CC} = 92.4 \pm 0.4$
 - $\square_{CP} = 79.2 \pm 0.4$
- Others
 - efficiency on the vertex cut: 95.1 ± 0.1 (stat) ± 0.5 (sys)

Kinematical and geometrical acceptance

- Events are selected where the HEPG electron is matched in a $\Box R = (\Box\Box^2 \Box\Box^2)$ cone to the reconstructed electron;
 - - events with 2 central electrons (fidele == 1)
 - events with 2 central-plug electrons (1 < I□ I < 3)
 - events with 2 plug-plug electrons (1 < I□ I < 3) -- tiny
 - Weights are derived for the 3 contributions;
- The kinematical cuts are applied and the resulting efficiency weighted according to the CC or CP population.

Electron ID (Z' analysis)

- Central electron (loose or tight)
 - $E_t \ge 25 \text{ GeV}$
 - $p_t > 15 \text{ GeV}$
 - hadem <= 0.055 + 0.00045 * E</pre>
 - E/p < 4 (for E_T > 100 GeV)
 - iso4e/emet < 0.1 (0.2 for second central loose)</p>
 - IDeltaX I < 3.0
 - I DeltaZ I < 5.0 cm
 - Fiducial = 1
 - Ishr < 0.2

$\square_{CC} = 92.4 \pm 0.4\%$

$$\square_{CP} = 79.2 \pm 0.4\%$$

Second Loose Plug electron

- • E_t ≥ 25 GeV
- •Isolation < 0.1
- •hadem <= 0.055 + 0.00045 * E
- \Box^2_{3x3} < 10
- •Fiducial $1 < |\Box| < 3$

Total acceptance

Background expectations

tt with both W ->e pythia

DY + 2 jets alpgen+PS/mcfm

Fakes

Isolation

 0.35 ± 0.03 events

 1.89 ± 0.44 events

 $4.0 \pm 2.0 CP$

0.0^{+0.7}₋₀ CC

Total

6.24 +3.1 -2.5

Isolation method

- The isolation method relies on the assumption that since jets are produced in association with other particles, the isolation fraction of a jet will be generally larger than the corresponding one of an electron. The phase space corresponding to the 2 electrons isolation fractions is divided in 4 regions:
- For central-central:

```
- Region A) Iso_1^{central} < 0.1, Iso_2^{central} < 0.2;
```

- Region B) $Iso_1^{central} < 0.1$, $0.2 < Iso_2^{central} < 0.4$;
- Region C) $0.2 < Iso_1^{central} < 0.4$, $Iso_2^{central} < 0.2$;
- Region D) $0.2 < Iso_1^{central} < 0.4$, $0.2 < Iso_2^{central} < 0.4$;
- For central-plug:

```
- Region A) Iso_1^{central} < 0.1, Iso_2^{plug} < 0.1;
```

- Region B) $Iso_1^{central} < 0.1$, $0.2 < Iso_2^{plug} < 0.4$;
- Region C) $0.2 < Iso_1^{central} < 0.4$, $Iso_2^{plug} < 0.1$;
- Region D) $0.2 < Iso_1^{central} < 0.4$, $0.2 < Iso_2^{plug} < 0.4$;

Isolation method (cont'd)

- We used 2 samples:
 - lepton P_T cut at 25 GeV
 - relaxed cut at $P_T > 20$ GeV (to let in more events)
- Extrapolating the contributions from the lower P_T cut region we estimate in the $P_T > 25$ sample
 - 0 events in the CC region (also 0 s.s. events)
 - 4 ± 2 events of background in the CP region
 - A2
 - B 0.66
 - C 0.66
 - D 0.106
 - Although we don't make use of tracking info for plug electron even if using DefTrack we still find one same sign event ($\square^{\text{ele}} = 1.1$)

Data sample

- btop0g (inclusive electrons) stripped from bhel08 and (4.8.4 Production)
- Inclusive-ele_4.11.1_REMAKE
- events selected from Ele_18 && Ele_70 triggers
- good runs from March 2002 to September 2003 (141544 168889)
 - Good run list from DQM page, em_noSi version 4
 - Removed 4 runs due to CSL problem
 - Luminosity = $199.7 * 1.019 = 203.5 \pm 12.2$
 - http://www-cdf.fnal.gov/internal/dqm/goodrun/v4/goodv4.html

Data sample

```
module clone Prereq HPTE
module enable Prereq-HPTE
module talk Prereq-HPTE
L1Accept
            set true
L2Accept
            set true
L3Accept
            set false
L3TriggerNames set ELECTRON70 L2 JET
          ELECTRON CENTRAL 18
          ELECTRON CENTRAL 18 NO L2 \
          W NOTRACK
          W NOTRACK NO L2
          Z NOTRACK
debug
          set false
exit
exit
```

```
module clone StripSingleE HPE2
module enable StripSingleE-HPE2
module talk StripSingleE-HPE2
elePtMin set 15.0
etCalMin set 70.0
delXMin set 3.0
delZMin set 5.0
show
exit
```

```
module clone StripSingleE HPE1
module enable StripSingleE-HPE1
module talk StripSingleE-HPE1
elePtMin set 9.0
etCalMin set 18.0
delXMin set 3.0
delZMin set 5.0
EoPMax set 4.0
lshrMax set 0.3
hademMax set 0.125
show
```

Z cross section check

Z boson candidates selected by requiring:

$$70 \text{ GeV} < M_{ee} < 110 \text{ GeV/c}^2$$

Cross section is calculated as:

	Central-Central	Central-Plug	
Acceptance	$10.1 \pm 0.1\%$	$10.1 \pm 0.1\%$ $18.3 \pm 0.7\%$	
ID efficiency	$92.4 \pm 0.4\%$ $79.2 \pm 0.4\%$		
Trigger Efficiency	99.9 ± 0.1%	96.8 ± 0.1%	
z ₀ efficiency	$95.2 \pm 0.5\%$	$95.2 \pm 0.5\%$	
Observed number of events	4568	6954	
Estimated background	91.6	194.4	
Integrated Luminosity	203.3. ± 12.2		
Z boson cross section	247±15.5	248±15.8	

Theory 250 pb

Z + 2 jets cross section check

Events selected in the mass region 66-116 GeV After the 2 jets cut

Acceptances calculated from the Alpgen MC kinemtical and fiducial only ID/trigger/vertex from data

138 events after the 2 jets cut 107 in the Z mass window Predicted: 111.3 ± 15

Analysis results

4 events survive the analysis cuts:

Number of events with 2 electrons with $E_T > 25 \text{ GeV}$	12461
2 jets with $E_T(j1) > 30 \text{ GeV}$ and $E_T(j1) > 15 \text{ GeV}$	138
removal of events with $76 < M_{ee} < 110 \text{ GeV}$	46
$E_T(j1) + E_T(j2) > 85 \text{ GeV && } E_T(e1) + E_T(e2) > 85 \text{ GeV}$	21
$((E_T(j1) + E_T(j2))^2 + (E_T(e1) + E_T(e2))^2) > 200 \text{ GeV}$	4

A look at the events - inv masses

161633/4017143

 $j1-l1 = 319.12 \text{ GeV/c}^2$

 $j2-l2 = 119.22 \text{ GeV/c}^2$

 $j1-l2 = 251.0 \text{ GeV/c}^2$

 $j2-l1 = 116.8 \text{ GeV/c}^2$

 $M(ee) = 130 \text{ GeV/c}^2$

167866/443088

 $j1-l1 = 219.2 \text{ GeV/c}^2$

 $j2-l2 = 96.4 \text{ GeV/c}^2$

 $j1-l2 = 78.4 \text{ GeV/c}^2$

 $j2-l1 = 90.3 \text{ GeV/c}^2$

 $M(ee) = 254 \text{ GeV/c}^2$

156455/410939

 $j1-l1 = 519 \text{ GeV/c}^2$

 $j2-l2 = 71.98 \text{ GeV/c}^2$

 $j1-l2 = 342.525 \text{ GeV/c}^2$

 $j2-l1 = 147.92 \text{ GeV/c}^2$

 $M(ee) = 141.7 \text{ GeV/c}^2$

162986/3598649

 $j1-l1 = 299.3 \text{ GeV/c}^2$

 $j2-l2 = 105.7 \text{ GeV/c}^2$

 $j1-l2 = 115.2 \text{ GeV/c}^2$

 $j2-l1 = 192.9 \text{ GeV/c}^2$

M(ee) = 59.7 S.S.

Systematics and combined relative uncertainty

- •Luminosity.....6%
- Acceptance
 - -pdf 4.3%
 - -statistical error of MC...... 2.2%
 - -jet energy scale ...7.6 -1.3 %

- •Electron ID efficiency (Z') ...0.8%
- •Event vertex cut5%

LQ mass	Acceptance	Abs Stat	Abs Sys	Tot Relative
	(%)			
200	32.24	± 0.85	± 4.57	0.14
220	35.07	± 0.79	± 4.13	0.12
240	38.11	± 0.80	± 3.8	0.10
260	40.4	± 0.82	± 3.7	0.09
280	41.8	± 0.84	± 3.6	0.087
300	41.9	± 0.84	± 3.5	0.084
320	43.3	± 0.84	± 3.4	0.080

Cross section Limit

Conclusions

- A preliminary 95% CL cross section lower limit as a function of M_{LQ} , for leptoquarks decaying with 100% branching ratio into eq ($\square = 1.0$) has been set.
 - CC and CP electrons have been used;
- Comparing it to the NLO theoretical predictions for leptoquark pairs production at the TeVatron, an upper limit on the Leptoquark mass is obtained at

 $m_{1.0} > 230 \text{ GeV/c}^2$

Difference with previous analysis

- The result presented in this note does not improve the previous result presented in March 2003.
- Signal efficiencies were overestimated due to a typo in the definition of the CC category
 - Basically the sum of all the contributions was used instead of only CC.
- Since we were looking at data in the CC region only (and observed 0 events) the cross section limit was consequently overestimated.
 - Using CC only acceptances in fact would have given a mass limit of order 205 GeV/c².
 - On the other hand we checked that, given the good run list used in March 2003, we would have seen 0 CP events as well.
 - This would have made the limit reach 220 GeV/c².